Notes:

1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.

2. NO CALCULATOR is permitted. This is a CLOSED BOOK exam. However, candidates are permitted to bring ONE AID SHEET written on both sides.

3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.

4. All questions are of equal value.

Marking Scheme:

1. 20 marks
2. 20 marks
3. 20 marks
4. (a) 6 marks, (b) 14 marks
5. (a) 10 marks, (b) 10 marks
6. 20 marks
7. 20 marks
8. 20 marks
1. Find the general solution of the differential equation \(x^2y' - 2xy' + 2y = (1 - 2x)x^2e^{-2x} \).
 Note that ' denotes differentiation with respect to \(x \).

2. Find the general solution, \(z(t) \), of the differential equation \(z'' + 4x = 3\cos 2t + 4\cos 3t \).
 Note that ' denotes differentiation with respect to \(t \).

3. Find the maximum and minimum values of \(f(x, y, z) = 4x + y^2 + 2z^2 \) over the ellipsoid \(x^2 + 3y^2 + z^2 = 2 \).

4. Let \(x = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} \) and \(A = \begin{pmatrix} 1 & 1 & 6 \\ -1 & 2 & -2 \\ 1 & -1 & 0 \\ 1 & 1 & 2 \end{pmatrix} \)
 (a) Show that \(x \) is an eigenvector of \(A \) and find the associated eigenvalue.
 (b) Show that \(3 \) is an eigenvalue of \(A \) and find an associated eigenvector.

5. Let \(f(x, y, z) = x^2 + y^2 + z^2 + 2y - 3x \), and let \(g(x, y, z) = 3x + y^2 - z^2 \).
 (a) Find an equation for the tangent plane to the surface \(g(x, y, z) = 9 \) at the point \((3, -1, 1) \).
 (b) Find the line tangent to the intersection of the surfaces \(f(x, y, z) = 0 \) and \(g(x, y, z) = 9 \) at the point \((3, -1, 1) \).

6. Evaluate the surface integral \(\iiint_S F \cdot dS \) where \(F(x, y, z) = xzi - 2yj + 3zk \) and \(S \) is the surface of the region bounded above by the paraboloid \(z = 4 - x^2 - y^2 \) and below by the plane \(z = 0 \).

7. Find the work done by the field \(F(x, y, z) = x^2i + yj - zk \) in moving a particle from the point \((0, 2, 0) \) to the point \((3\pi, 0, 2) \) along the path \(x = 6t, y = 2\cos t, z = 2\sin t \).

8. Evaluate the surface integral \(\iiint_S x^2yz \, dA \) where \(S \) is the portion of the cylinder \(x^2 + y^2 = 4 \) with \(0 \leq z \leq 4 \) and \(y \geq 0 \).