NATIONAL EXAMS MAY 2010

98-CIV-A1 ELEMENTARY

STRUCTURAL ANALYSIS

3 HOURS DURATION

NOTES:
1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear statement of any assumption made.

2. Each candidate may use an approved model of Sharp or Casio calculator; otherwise, this is a CLOSED BOOK Examination.

3. Six questions constitute a complete paper. Answer ALL questions #1 through #5; answer ONLY ONE of #6, #7 or #8.

4. The marks assigned to each question are shown in the left margin.

FRONT PAGE
1. For each of the structures shown state whether it is unstable, statically determinate, or statically indeterminate. If the structure is statically indeterminate, state the degree of indeterminacy. Structures a) through d) have beam-type members.

Structures e) and f) have truss-type members. Diagonals are not connected where they cross.
(2) For each structure shown, compute the reactions and draw shear and bending moment diagrams. Indicate which are positive and which are negative segments of each bending moment diagram. For each shear and bending moment diagram, calculate and indicate the magnitudes of the maximum positive and negative ordinates.

(a)

(b)

(c)

(3) (a) Calculate the vertical deflection at joint L₂ on the truss shown below. AE = 36.0 x 10⁴ kN for all members.

(b) If the 15 kN vertical load were at joint L₂ instead of joint L₁, what would be the vertical deflection be at joint L₁?
4. For the trusses shown below, calculate the forces in the members that are listed. For each force, indicate whether it is tension or compression.

a) Calculate the forces in:
 \(U_1 - L_2 \)
 \(U_1 - L_3 \) and
 \(L_3 - L_4 \)

b) Calculate the forces in:
 \(U_1 - L_2 \)
 \(L_1 - U_3 \) and
 \(U_1 - U_2 \)

Diagonals are not connected where they cross.
5. a) For the determinate, two-span beam below, draw the influence lines from point A through E for:
 i) bending moment at Section B
 ii) shear force at Section B, and
 iii) shear force immediately left of support C
 For each influence line, calculate and indicate the value of the influence coefficient that has the maximum absolute value.

![Beam Diagram]

5. b) A vehicle, which is idealized as three point loads shown on the left below, moves on beams at the top chord level of the truss shown. The shape of the influence line for force in member U₃ – L₃ is shown below the truss. Calculate and indicate on a sketch the maximum and minimum ordinates of the influence line and calculate the maximum compression force that occurs in member U₃ – L₃ while the idealized vehicle crosses the structure.

![Vehicle Diagram]
Select and answer ONE QUESTION ONLY from Question #6, #7 or #8.

(24) 6. For the frame shown below, using the moment-distribution method or the slope-deflection method, calculate and plot the shear force and bending moment diagrams. On both diagrams, for each member, calculate and label the maximum and minimum ordinates (Minimum ordinates are frequently negative values). Members have the relative EI values shown and all are inextensible.

(24) 7. Use the principle of virtual work to calculate the vertical deflection at point C on the beam structure shown below. Both beams have the same EI value which is 6.0×10^5 kN.m^2.
Select and answer ONE QUESTION ONLY from Question #6, #7 or #8.

(24) 8. For the structure shown below, compute the reactions and draw shear and bending moment diagrams. On both diagrams, for each member, calculate and label the maximum and minimum ordinates (Minimum ordinates are frequently negative). The uniformly distributed loading acts horizontally on member D – E and is given per vertical metre.