NOTES:
1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear statement of any assumption made.

2. Each candidate may use an approved model of Sharp or Casio calculator; otherwise, this is a CLOSED BOOK Examination.

3. Six questions constitute a complete paper. Answer ALL questions #1 through #4; answer ONLY TWO of #5, #6, #7 or #8.

4. The marks assigned to each question are shown in the left margin.
1. For each of the structures shown state whether it is unstable, statically determinate, or statically indeterminate. If the structure is statically indeterminate, state the degree of indeterminacy. Structures a) through d) have beam-type members.

Structures e) through f) have truss-type members. Diagonals are not connected where they cross.
2. For each structure shown, compute the reactions and draw shear and bending moment diagrams. For each shear and bending moment diagram, calculate and indicate the magnitudes of maximum and minimum ordinates (Minimum ordinates are frequently negative).

(18)

3. Calculate the vertical deflections at points A and C on the beam shown below.

\[EI = 10000 \text{ kN.m}^2 \]
4. For the frame shown below, using the moment-distribution method or the slope-deflection method, calculate and plot the shear force and bending moment diagrams. On both diagrams for each member, calculate and indicate the maximum and minimum ordinates (Minimum ordinates are frequently negative). All members have the same EI value and are inextensible.

Select and answer TWO QUESTIONS ONLY from Questions #5, #6, #7 or #8.

5. For the frame shown below, using the moment-distribution method or the slope-deflection method, calculate and plot the shear force and bending moment diagrams. On both diagrams for each member, calculate and indicate the maximum and minimum ordinates (Minimum ordinates are frequently negative). The members have the relative EI values shown and are inextensible. Take advantage of symmetry.
Select and answer TWO QUESTIONS ONLY from Questions #5, #6, #7 or #8.

(20) 6. a) For the determinate, three-span structure shown, draw the influence lines for:

i) bending moment over support E
ii) shear force immediately left of support E
iii) shear force immediately right of support E

For each influence line, calculate and indicate the value of the influence coefficient that has the maximum absolute value.

![Three-span structure diagram]

b) A vehicle, which is idealized as the three point loads spaced as shown below, moves across the structure on beams at the level of the lower chord of the truss. Calculate and show the influence line for force in member $U_1 - L_3$. Show the maximum and minimum ordinates on a sketch of the influence line and calculate the maximum tension force in member $U_1 - L_3$ caused by the vehicle as it crosses the structure.

![Vehicle and truss diagram]
Select and answer TWO QUESTIONS ONLY from Questions #5, #6, #7 or #8.

7. Use the principle of virtual work to calculate the horizontal and vertical deflections at point 3 on the structure shown below. The EA value for the cable is 15.0×10^3 kN. For the flexural members, $EI = 5.0 \times 10^3$ kN.m2.

[Diagram of a structure with labels 1, 2, 3, 4 and forces applied at point 3.]
Select and answer TWO QUESTIONS ONLY from Questions #5, #6, #7 or #8.

8. For the structure shown below, compute the reactions and draw shear and bending moment diagrams. On both diagrams for each member, calculate and indicate the magnitude of maximum and minimum ordinates (Minimum ordinates are frequently negative).

![Structure Diagram](image-url)