NOTES:

1. This is a CLOSED BOOK EXAM. No notes or textbooks permitted.
2. Candidates may use one of the approved Casio or Sharp calculators.
3. Answer all questions except where otherwise noted.
4. Show all calculations.
5. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
6. The mark distribution is as follows:

 Problem 1 (a) 10, (b) 8, (c) 4, (d) 3 (e) 5 Total 30
 Problem 2 (a) 11 (b) 4, (c) 3, (d) 3 (e) 4 Total 25 marks
 Problem 3 Part A or B Total 5 marks
 Problem 4 Five marks each Total 30 marks
 Problem 5 Total 10 Marks
 Bonus Question 2 marks

Unit conversions:

1 tonne = 1000kg = 2202.6 lb
1 ton = 2000 lb
1 inch = 2.54 cm = 25,400 microns (μm)
Problem 1. (25 marks)
The publication Canadian Milling Practice contains the following description of the Nanisivik zinc mine which operated in the Canadian high arctic from 1976 to 2002.

The Nanisivik mill processes 2250 tonnes per day of ore. The economic mineralization of the ore is sphalerite (ZnS, 67.1% Zn). The plant has an operating availability of 95% with the balance consisting of planned maintenance shutdowns.
The grinding section consists of a conventional circuit with primary grinding provided by a 2.9 m by 3.7 m rod mill and secondary grinding provided by a 3.2 m by 3.7 m ball mill. Classification is provided by three 38 cm cyclones with the flotation feed size of 60% -200 mesh (75 µm). The grinding index of the ore is 9 kWh per tonne milled. Grinding media consumption is 900 g/t split evenly between rods and balls.
The flotation section consists of a rougher, scavenger and three cleaning stages. All flotation cells are Denver 30s. Rougher concentrates are reground in a 1.8 m by 2.7 m zinc concentrate regrind mill to a fineness of 80% - 75 µm. The flotation circuits are operated at a pH in the 12.2 range, which results in lime consumption in the order of 2300 g/t milled. The main collector is potassium amyl xanthate with consumptions totaling 150 g/t milled. Copper sulphate is added to the conditioning stage and represents 535 g/t milled in total consumption.
The metallurgical performance is consistent with a concentrate grade of 57.5% zinc and a recovery of 96.5%.
The dewatering section consists of conventional thickeners, vacuum disk filters and rotary dryers. The heat for the dryers is supplied from the power plant diesel exhaust gas. Concentrates are dried to 5% moisture and conveyed to the load out areas for haulage to the main storage facility capable of storing 125,000 t of concentrates.

(a) Sketch the flow sheet of the milling circuit described above.

(b) If the feed grade is 6.91 % Zn,
(i) calculate the tonnes per year of zinc concentrate produced.
(ii) calculate the grade of the tailings (% Zn).

(c) Making reasonable assumptions, and using Bond's equation, calculates the net power (kilowatts) required for grinding of the ore. List the assumptions made.
Bond's Equation:

\[W = \frac{10 W_i}{\sqrt{P}} - \frac{10 W_i}{\sqrt{F}} \]

(d) Explain why copper sulphate is added to the flotation conditioner.

(e) Using the Gy equation calculate the required size of sample of the zinc concentrate required to obtain a zinc assay that is accurate to within 0.1% Zn, 95 times out of 100. Assume a value of C of 5.0 g/cm³.
Gy Equation:

\[M = \frac{C d^3}{s^2} \]
Problem 2. (25 marks)

A copper flotation circuit is used to concentrate 100 tonnes per hour of ore (valuable mineral is chalcopyrite (specific gravity 4.2, containing 34.6 % copper) with a siliceous gangue (specific gravity 2.6). The circuit layout is shown on the sketch below:

![Diagram of flotation circuit](image)

FIGURE 1. Layout of Flotation Circuit for Problem 2

Assume that the above circuit was sampled and the results were as follows:

<table>
<thead>
<tr>
<th>Stream</th>
<th>%solids by wt</th>
<th>% Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit Feed</td>
<td>33.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Rougher concentrate</td>
<td>50</td>
<td>13.89</td>
</tr>
<tr>
<td>Final Concentrate</td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>Cleaner Tailings</td>
<td>8.62</td>
<td>5</td>
</tr>
<tr>
<td>Final Tailings</td>
<td>31.2</td>
<td>0.1016</td>
</tr>
</tbody>
</table>

Using the above data carry out a material balance and calculate the following:

(a) the copper recovery in
 (i) the circuit
 (ii) the cleaners
 (iii) the roughers

(b) the tonnes/hour of dilution water added to the cleaners

(c) the tonnes/hour of final concentrate produced

(d) the tonnes/hour of solids recirculated back to the roughers i.e. the cleaner tailings

(e) the specific gravity of the final concentrate solids
Problem 3. (5 marks).
ONLY ANSWER PART A OR PART B OF THIS QUESTION.

PART A
A flotation kinetics test was carried out on an oil sands sample. The results were as follows.

<table>
<thead>
<tr>
<th>Time (Minutes)</th>
<th>Flotation</th>
<th>Bitumen Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>60%</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>90%</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>90%</td>
</tr>
</tbody>
</table>

Assuming that the flotation follows the following first order rate equation:

\[R = R_0 [1 - \exp(-kt)] \]

(a) Using the available data determine the parameters \(R_0 \) and \(k \).
(b) Determine the flotation time required to achieve an 80% recovery.

PART B

\[V = \frac{g d^2 (D_s - D_f)}{18 \mu} \]

(a) Using Stokes' equation (given above) calculate the diameter of a coal particle (Specific gravity 1.4) which would settle in water at the same velocity as a 30-micron diameter quartz (Specific gravity 2.65) particle settling in water.

(b) Repeat the calculation in part (a) for both particles settling in air.

Problem 4. (30 marks)
With the aid of sketches describe the operating principles and application of the following mineral processing unit operations. ANSWER ANY SIX OF THE FOLLOWING NINE TOPICS:
- Dense (heavy) medium cyclone
- Shaking table
- Jig
- Flotation column
- Continuous thickener
- High tension (electrostatic) separator
- Jaw crusher
- Spiral (Humphreys) concentrator
- Rotary (Bradford) Coal Breaker
Problem 5. True False. (Total 10 marks)

Indicate whether the statement is true or false. If it is false, correct it to form a positive statement. For example if the statement was:

“Toronto is the capital of Canada.”

You would declare the statement as being false and correct it by:

“Ottawa is the capital of Canada.” OR “Toronto is the capital of Ontario.”

But you could not correct it with a negative statement such as:

“Toronto is not the capital of Canada”

(i) Iron is the most abundant metal in the earth’s crust.

(ii) Galena is the main lead-bearing ore mineral.

(iii) Kick’s theory of comminution is that the energy consumed in size reduction is proportional to the area of new surface produced.

(iv) Separation Efficiency = \(R_m - R_g \)

where \(R_m \) = % recovery of the valuable mineral
\(R_g \) = % recovery of gangue into the concentrate

(v) Imperfection = \(\frac{d_{75} - d_{25}}{2} \)

(vi) A contact angle of zero means the solid surface is hydrophobic.

(vii) Zeta potential is the particle surface electrical charge relative to the surrounding aqueous medium.

Bonus Question (2 marks):

List two mineral commodities for which Canada has no mine production.