98-Comp-B10, Distributed Systems

3 hours duration

NOTES:

1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear statement of any assumptions made.

2. This is a CLOSED BOOK examination. One of two calculators is permitted any Casio or Sharp approved models.

3. Answer any five of the seven questions. Only the first five questions as they appear in the answer book will be marked.

4. All questions carry equal weight.

5. Most questions require an answer in essay format. Clarity and organization of the answer are important.
Question # 1. Characteristics of distributed systems
 a. Give two types of hardware resource and two types of data or software resource that can
 usefully be shared. Give examples of their sharing as it occurs in distributed systems.
 b. Explain what is meant by a client program and a server program. Explain and illustrate
 (in graphical form) the client-server architecture of one major Internet applications (for
 example the Web, email or ftp).

Question # 2. Fundamental concepts and mechanisms

 a. A client sends a 300 byte request message to a service, which produces a response
 containing 6000 bytes. Estimate the total time to complete the request in each of the
 following cases, with the performance assumptions listed below:
 i) Using connectionless (datagram) communication (for example, UDP);
 ii) Using connection-oriented communication (for example, TCP);
 iii) The server process is in the same machine as the client.

 [Latency per packet (local or remote, incurred on both send and receive): 5 milliseconds
 Connection setup time (TCP only): 5 milliseconds
 Data transfer rate: 10 megabits per second
 MTU: 2000 bytes
 Server request processing time: 2 milliseconds
 Assume that the network is lightly loaded.]

 b. Comment on the use of Connectionless (UDP) and connection-oriented (TCP) communication for
 each of the following application:
 1. Mail access protocols (for example, IMAP);
 2. Internet radio;
 3. Information browsing (for example, HTTP);

Question # 3. Client-server systems & inter-process communications

 a. Suppose you were developing a distributed multimedia conferencing application. Which
 of the following mechanisms would you choose to implement communication between
 processes in the applications, and why?
 i) Stream sockets
 ii) Datagram sockets
 iii) RPC over streams sockets
 iv) RPC over datagram sockets

 b. Assume the RRA protocol is in use. How long should servers retain unacknowledged
 reply data? Should servers repeatedly send the reply in an attempt to receive an
 acknowledgement?
Question # 4. Operating systems for distributed architectures
 a. A file server uses caching. The average hit rate achieved is 80%. If the requested block is
 in the cache, file operations in the server cost 4 ms of CPU time; otherwise, it takes an
 additional 10 ms of disk I/O time otherwise. Estimate the server’s throughput capacity
 (average requests/sec) if it is: (Explain any assumptions you make)
 1. single-threaded;
 2. two-threaded, running on a single processor;
 3. two-threaded, running on a two-processor computer

 b. Compare the thread-per-request architecture with the worker pool multi-threading
 architecture.

 c. What the kernel must provide for a user-level implementation of threads (such as Java on
 UNIX)? In user-level threads implementations, do page faults present a problem?

Question # 5. Security
 a. Initial exchanges of public keys are vulnerable to the man-in-the-middle attack. Describe
 as many defences against it as you can.

 b. PGP is widely used to secure email communication. Describe the steps that a pair of users
 using PGP must take before they can exchange email messages with privacy and
 authenticity guarantees. What scope is there to make the preliminary negotiations
 invisible to the users?

Question # 6. Distributed file systems
 a. Name and discuss three key design issues for distributed file systems.

 b. How does the NFS Automounter help to improve the performance and scalability of
 NFS?

 c. Compare AFS and NFS from stability point view? Are there any limits on AFS
 scalability, assuming that servers can be added as required? Are there any recent
 technological developments that would help to offer greater scalability?

Question # 7. Principles of fault tolerance continual
 a. What are the benefits of replication?

 b. Write pseudocode for dependency checks and combine measures (as used in Bayou)
 appropriate for simple room-booking application.