National Exams May 2012

07-Elec-A5, Electronics

3 hours duration

Notes:

1. If any doubt exists as to the interpretation of any question, the candidate is urged to submit, within their answer, a clear statement of any assumptions made.

2. This is a CLOSED BOOK EXAM. A Casio or Sharp approved calculator is permitted.

3. FIVE (5) questions constitute a complete exam paper. The first five questions as they appear in the answer book will be marked.

4. All questions are worth 20 marks each.

5. Please start each question on a new page and clearly identify the question number and part number, e.g. Q4(a).

6. In schematics, ground and chassis may be assumed to be common, unless specifically stated otherwise.

7. Unless otherwise specified, assume that Op-Amps are ideal and that supply voltages are ±15V.

8. Some questions require an answer in essay format. Clarity and organization of the answer are important. Provide block diagrams and circuit schematics whenever necessary.
QUESTION (1)

In the following questions, all BJT transistors have $\beta = 50$, $V_{BE,\text{on}}$ or $V_{EB,\text{on}} = 0.6\text{V}$, $V_{CE,\text{sat}}$ or $V_{EC,\text{sat}} = 0.3\text{V}$ and $V_A = \infty$. Solve for the required voltages. (20 points)

(a) $+5\text{V}$

\[+2\text{V} \quad 20\text{k}\Omega \quad 1\text{k}\Omega \quad V_C = ? \]

(b) $+5\text{V}$

\[+2\text{V} \quad 10\text{k}\Omega \quad 1\text{k}\Omega \quad 100\text{\Omega} \quad V_B = ? \]

(c) $+5\text{V}$

\[+2\text{V} \quad 1\text{k}\Omega \quad -5\text{V} \quad 470\text{\Omega} \quad V_B = ? \]

(d) $+5\text{V}$

\[+2\text{V} \quad 1\text{k}\Omega \quad -5\text{V} \quad 5\text{k}\Omega \quad 2\text{k}\Omega \quad V_C = ? \]

(e) $+5\text{V}$

\[+2\text{V} \quad 100\text{\Omega} \quad 2\text{k}\Omega \quad Q_2 \quad Q_1 \quad V_{C1} = ? \]
QUESTION (2)

For the following op amp circuit:

a) Provide an expression for i_L as a function of v_{in}, R_1, R_2, R_3, R_4 and Z_L. (16 points)

b) What is a possible function for this circuit? (4 points)

[Diagram of an op amp circuit]

QUESTION (3)

For this diode circuit, assume that all the diodes are ideal with forward voltage drop of $V_{on} = 0.7$ V. Given that $R_1 = R_2 = R_L = 10$ kΩ, Sketch accurately in your answer book the transfer function v_O versus v_I for the range $-10 V \leq v_I \leq +10$ V. (20 points)

[Diagram of a diode circuit]
QUESTION (4)

Transistor M_1 in this circuit has the following characteristics:

$|V_{TH}| = 1 \text{ V}$
$K = 2 \text{ mA/V}^2$
$\lambda = 0.01 \text{ V}^{-1}$

Given:

$V_{DD} = 10 \text{ V}$
$R_L = R_S = 2 \text{ k}\Omega$
$C_1 = C_2 = \infty$

a) Design this circuit to have the following specifications:

$R_{in} = 100 \text{ k}\Omega$, $I_{SD} = 2\text{ mA}$

Provide values for R_1, and R_2. (8 points)

b) Determine the output resistance, R_o. (6 points)

c) Determine the maximum undistorted peak to peak output voltage? (6 points)

Useful formulae: for p-channel MOSFET

\[
i_{SD} = K \left[2(v_{SG} - |V_{TH}|) v_{SD} - v_{SD}^2 \right] \quad \text{triode region}
\]

\[
i_{SD} = K \left(v_{SG} - |V_{TH}| \right)^2 \left(1 + \lambda v_{SD} \right) \quad \text{saturation region}
\]
QUESTION (5)

In the following circuits, the op amp is ideal except for an input offset voltage, \(V_{OS} = 3 \text{ mV} \), input bias current, \(I_B = 0.2 \mu \text{A} \), and input offset current of \(I_{OS} = 50 \text{ nA} \). If \(R_1 = R_3 = 10 \text{ k}\Omega \), and \(R_2 = R_4 = 1 \text{ M}\Omega \), find the worst case (largest) dc offset voltage at the output, \(V_{OUT} \). (20 points)

\[
\begin{align*}
\text{QUESTION (6)}
\end{align*}
\]

Assume that the BJT has the following characteristics:

\[
\begin{align*}
\beta &= 100 \\
V_{BE(on)} &= 0.7\text{V} \\
V_{CE(sat)} &= 0.3\text{V} \\
V_A &= \infty
\end{align*}
\]

Given:

\[
\begin{align*}
V_{CC} &= 10\text{V} \\
R_L &= 4.7\text{k}\Omega \\
R_E &= 1\text{k}\Omega
\end{align*}
\]

a) Design this common emitter amplifier circuit to have the following specification:

DC bias current, \(I_E = 2\text{mA} \),

A mid-band voltage gain \(v_{out}/v_s = 50 \text{ V/V} \)

Provide values for \(R_1, R_2, \) and \(R_C \). (15 points)

b) What is the equivalent output resistance, \(R_O \)? (2 points)

c) What is the maximum undistorted peak to peak output voltage swing at the output? (3 points)