NATIONAL EXAMS, DECEMBER 2013

04-BS-9, Basic Electromagnetics

3 Hours Duration

Notes:

1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.

2. Candidates may use one of two calculators, the Casio or Sharp approved models. This is a closed book exam.

3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.

4. All questions are of equal value.

5. Aids: \(\varepsilon_0 = 8.85 \times 10^{-12} \, \text{F/m}, \quad \mu_0 = 4\pi \times 10^{-7} \, \text{H/m}, \quad e = 1.6 \times 10^{-19} \, \text{C} \)
1. Electric field is produced by a charge distribution described below: positive point charge $2e$ ($e = 1.6 \times 10^{-19}$ C) surrounded by a spherical surface charge layer of radius 0.5×10^{-10} m centered on the positive charge and carrying a total charge $-e$.

What is the electric potential with respect to infinity of a point separated from the positive charge by distance of 0.25×10^{-10} m?

2. Magnetic field is produced by a cylindrical surface layer current of 0.5 cm radius and 2 cm length. Total current in the layer is 1 mA.

What is the magnetic flux density B (in vacuum) on the axis of the cylinder in the middle thereof.

Aid: $\int du (1 + u^2)^{-\frac{3}{2}} = u(1 + u^2)^{-\frac{1}{2}}$.

3. Two horizontal infinite current sheet each 1 mm thick are separated by a 1 mm wide gap. The current in the upper sheet flows north, that in the lower one flows south. Current densities in the two sheets are 10^3 A/m2.

Using Ampere’s law and principle of superposition determine the value and direction of magnetic field intensity vector \vec{H} between the two sheets.

4. A uniform magnetic field of 10^{-5} teslas points in a horizontal direction. A circular wire loop of 10 turns and 10 cm2 area located in vertical planes rotates at 3600 RPM about its vertical diameter.

What is RMS voltage induced in the loop?

5. Plate separation of a circular parallel plate capacitor of 5 cm radius is 1 mm. The space between the plates is filled with dielectric of 2.5 relative permittivity. Breakdown field of the dielectric is 10^7 V/m.

Determine:

(i) the capacitance of the capacitor and,

(ii) the lowest upper bound of energy that can be stored in the capacitor.
6. A 3 cm long solenoid of 50 turns is tightly wound on 10 cm long core of circular cross-section of 5 mm diameter. The relative permittivity of the core material is 100.

What is the inductance of the system?

7. Magnetic field intensity \vec{H} of a 10 MHz electromagnetic wave propagating in vacuum is $(H, 0,0) \cos(\omega t - kz)$, with RMS value of $H = 50\mu A/m$. Using Maxwell's equations determine the RMS value of the electric field of the wave.

Aid: curl $(X,Y,Z) = \left(\frac{\partial Z}{\partial Y} - \frac{\partial Y}{\partial Z}, \frac{\partial X}{\partial Z} - \frac{\partial Z}{\partial X}, \frac{\partial Y}{\partial X} - \frac{\partial X}{\partial Y} \right)$.

8. Two 1 km long transmission lines connected in parallel are delivering power from a 115 volt, zero impedance generator to a 10 ohm resistive load. The cross-sections of the conductors of the two transmission lines are circular of 1 mm2 area. The resistivity of the conductor material of one of the lines is 1.7×10^{-8} ohm meters (copper), that of the other is 20×10^{-8} ohm meters (steel).

Calculate:

(i) power delivered to the load and,

(ii) power lost in the steel line.