Notes:
1. If doubt exists as to the interpretation of any question, the candidate is urged to include a clear statement of any assumptions made along with their answer.

2. Any APPROVED CALCULATOR is permitted. This is a CLOSED BOOK exam. However, candidates are permitted to bring ONE AID SHEET written on both sides.

3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.

4. All questions are of equal value.

Marking Scheme:
1. (a) 10 marks, (b) 10 marks
2. 20 marks
3. 20 marks
4. (a) 8 marks, (b) 12 marks
5. 20 marks
6. 20 marks
7. 20 marks
8. 20 marks
1. For each of the following differential equations, find the general solution, \(y(x) \).

 (a) \(y'' + 9y = \sec 3x \)

 (b) \(y'' - y' - 6y = 3x^2 + e^{-2x} \)

 Note that ‘ denotes differentiation with respect to \(x \).

2. Find the maximum and minimum values of \(f(x,y,z) = x + y - z \) over the sphere \(x^2 + y^2 + z^2 = 1 \).

3. Find the line tangent to the intersection of the surfaces

 \[3x^2 + 2y^2 - 2z = 1 \]

 and

 \[x^2 + y^2 + z^2 - 4y - 2z + 2 = 0 \]

 at the point \((1, 1, 2)\).

4. Let \(A = \begin{pmatrix} 3 & 1 \\ -2 & 1 \end{pmatrix} \).

 (a) Find the eigenvalues and eigenvectors of \(A \).

 (b) Solve the initial value problem

 \[
 \begin{align*}
 x' &= 3x + y, & x(0) &= 1, \\
 y' &= -2x + y, & y(0) &= 0.
 \end{align*}
 \]

5. Evaluate the surface integral \(\iint_S \mathbf{F} \cdot dS \) where \(\mathbf{F}(x,y,z) = yz\mathbf{i} - 2xy\mathbf{j} + 3z\mathbf{k} \) and \(S \) is the surface of the region bounded above by the paraboloid \(z = 4 - x^2 - y^2 \) and below by the plane \(z = 0 \).

6. Find the volume of the region bounded by the paraboloid \(z = \frac{x^2}{4} + \frac{1}{2}(x^2 + y^2) \) and the plane \(z = 4 \) that lies outside the cone \(z^2 - 4x^2 - 4y^2 = 0 \).

7. Let \(C \) be the curve formed by the intersection of the cylinder \(x^2 + y^2 = 9 \) and the plane \(z = 1 + y - 2x \), travelled clockwise as viewed from the positive \(z \)-axis, and let \(\mathbf{v} \) be the vector function \(\mathbf{v} = 4zi - 2yj + 2yk \). Evaluate the line integral \(\int_C \mathbf{v} \cdot dr \).

8. Compute the response of the damped mass-spring system modelled by

 \[
 y'' + 3y' + 2y = r(t), \quad y(0) = 0, \quad y'(0) = 0,
 \]

 where \(r \) is the square wave

 \[
 r(t) = \begin{cases}
 1, & 1 \leq t < 2, \\
 0, & \text{otherwise},
 \end{cases}
 \]

 and ‘ denotes differentiation with respect to time.