National Exams

98-Comp-A1, Electronics

3 hours duration

NOTES:

1. If doubt exists as to the interpretation of any question, the candidate is urged to indicate, with the answer, a clear statement of any assumptions made.

2. This is a OPEN BOOK exam. Any non-communicating calculator is permitted.

3. FIVE (5) questions constitute a complete exam paper. The first 5 questions as they appear in the answer book will be marked.

4. Each question is of equal value.
Question 1 (20 marks)

Figure 1. The diode can be replaced by piece-wise linear model with \(V_D = 0.7V \), \(R_S = 10\Omega \) for forward bias.

For the circuit shown in Figure 1:

a) Sketch \(V_i \) and \(V_o \) as a function of time, indicating peak voltages.

b) What is the peak reverse voltage across \(D_1 \)?

c) What is the peak power dissipated in \(D_1 \)?

Figure 2. Assume the diodes have a voltage drop \(V_D = 0.7V \) when conducting. \(R_1 = R_2 = 1k\Omega \).

For the circuit shown in Figure 2:

d) For \(V_i = 10V \sin(2\pi 60t) \) sketch the output \(V_o(t) \). Label key voltages and times, and indicate changes in operating region for each diode.
Question 2 (20 marks)

![Circuit Diagram]

Figure 3. $k_n = \mu_n C_{ox} = 1 \text{ mA/V}^2$, $k_p = 40 \text{ \mu A/V}^2$. $W/L = 10 \text{ \mu m}$, $V_{in} = V_{dd} = 1V$, $|V_A| = 100V$

For the circuit shown in Figure 3:

a) Draw a small signal ac equivalent circuit.

b) Find an expression for voltage gain V_o/V_i.

c) Choose a bias current I_{REF} to provide a gain of 200 V/V.

d) A load resistor of 100 kΩ is connected from V_o to ground. What is the voltage gain?
Question 3 (20 marks)

For the circuit shown in Figure 4:

a) Derive the transfer function \(\frac{V_o(j\omega)}{V_i(j\omega)} \) for the circuit shown, assuming the op-amp is ideal.

b) Find the DC gain, 3dB frequency, and the unity gain bandwidth for this circuit.

c) If \(V_i(t) = 1\sin(200t) \) V, find \(V_o(t) \).

d) If the op-amp has a finite gain \(A=10^4 \) V/V, find the transfer function \(\frac{V_o(j\omega)}{V_i(j\omega)} \).
Question 4 (20 marks)

Figure 5. $V_{be}=0.7 \text{V (active)}, V_{ce}=0.2 \text{V (saturation)}, \beta=100$.

For the circuit shown in Figure 5:

a) What value of V_i will make Q_1 active? What is the expression for V_o for this input?

b) What value of V_i will make Q_1 saturate?

c) For Q_1 active with $I_C=1 \text{mA}$, draw the small signal AC equivalent circuit. Evaluate the voltage gain.

Figure 6. $V_{be}=0.7 \text{V (active)}, V_{ce}=0.2 \text{V (saturation)}, \beta=100$.

d) For $V_A=V_B=0 \text{V}$, what is the state of each transistor and the value of V_o?

e) For V_A or $V_B=3 \text{V}$, what is the state of each transistor and the value of V_o?
Question 5 (20 marks)

Figure 7. Assume the op-amps are ideal. $R=10\,\text{k}\Omega$, $R_f=100\,\text{k}\Omega$

For the circuit shown in Figure 7:

a) Find the loop gain expression.

b) What condition on the loop gain will result in oscillation? What is the expression for oscillation frequency for this circuit?

c) Choose a value R_G that will initiate oscillation.

d) Choose a value C to provide an oscillation frequency of $1\,\text{kHz}$.
Question 6 (20 marks)

![Circuit Diagram](image)

Figure 8. $k_n' = 50 \mu A/V^2$, $k_p' = 20 \mu A/V^2$, $V_{tn} = V_{tp} = 1V$, $C_{ox} = 1fF/\mu m^2$

a) If the minimum gate length for this technology is 1 μm, size Q_N and Q_P to obtain a symmetric transfer characteristic.

b) Estimate the propagation delay if the inverter drives a second identical inverter. Consider only the gate oxide contribution to capacitance.

![Circuit Diagram](image)

Figure 9.

For the circuit shown in Figure 9:

c) For a low to high transition at node 1 at $t=0s$, sketch the waveforms at all 5 nodes for one full period.

d) If the propagation delay for a single inverter is 0.5 ns, what is the frequency of the signal supplied by this circuit?
Question 7 (20 marks)

![Diagram](image)

Figure 10.

a) Initial value of $V_o=0V$. At $t=0s$ the switch is connected to V_a (negative). What is $V_o(0)$?

b) At $t=T_1$ S is moved to connect to V_{ref} (positive). How long (T_2) will it take for V_o to return to 0V?

c) A counter measures T_1 and T_2. If the counter value is n_{ref} at $t=T_1$, what is the value at $t=T_2$?

d) If $V_{ref}=10V$ and $n_{ref}=2^8$, what is the voltage resolution in measuring V_a?

![Diagram](image)

Figure 11.

e) For the circuit in Figure 11, find the expression for V_o as a function of switch positions S_a to S_d. Which switch represents the most significant bit?
Marking Scheme

1. 20 marks total (4 parts, 5 marks each)
2. 20 marks total (4 parts, 5 marks each)
3. 20 marks total (4 parts, 5 marks each)
4. 20 marks total (a), (b), (c) 5 marks each, d) 2 marks, e) 3 marks)
5. 20 marks total (4 parts, 5 marks each)
6. 20 marks total (4 parts, 5 marks each)
7. 20 marks total (a) 4 marks, b) 4 marks, c) 3 marks, d) 4 marks, e) 5 marks)