December 2015

National Exams 2015

98-Pet-B1, Well Logging and Formation Evaluation

3 hours duration

NOTES:

1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.

2. Candidates are also encouraged to make any reasonable assumption for the missing parameters (if any) and answer questions.

3. This is a CLOSED BOOK exam.
 - Approved calculators are permitted.
 - All graphs, equations, grid papers, etc are provided in the attachments.

4. This exam contains 10 questions (15 pages). All questions will be marked.

5. Value of each question is shown.

6. Some questions require an answer in essay format. Clarity and organization of the answer are important.
Question 1:

In the context of acoustic properties of the rocks, what are the applications of:

a. Compressional and shear wave velocities. (3 pts)

b. Compressional and shear wave attenuation. (2 pts)

c. Amplitude of reflected waves. (3 pts)
Question 2:

Below is the output log for a gamma ray tool. Locate the following zones on the below figure: (7 pts)

Black marine shale
Question 3:

Provide a definition/clear explanation for the following terms.

a) Mud invasion? (2 pts)

b) Mud cake? (2 pts)

c) Mud filtrate? (2 pts)

d) Flushed zone? (2 pts)

Question 4:

List six assumptions which the conventional interpretation techniques are based on. (6 pts)
Question 5:

List the three types of neutron detectors. (3 points)

Question 6:

Reservoir rock contains minerals that give off Natural Gamma Radiation. Name three radioisotopes that Spectral Gamma can detect? (3 pts)

Question 7:

A Neutron and density log reading in a clean, gas-bearing sandstone formation are 5% and 2.0 g/cm³, respectively. Assuming the gas is low density and filtrate is fresh mud, determine ϕ and Sxo with and without inclusion of excavation effect. (15 Pts)
Question 8:

Prepare a crossplot of ϕ_N-ϕ_D vs. gamma ray that shows selected zones within intervals A through E in the following figure (use grid paper provided in the last page of this exam). The adjacent shale formation exhibits the following average values:

$\phi_{D,sh} = 38\%$, $\phi_{N,sh} = 16\%$, $\gamma_{sh} = 85$ API units, $\gamma_{clean} = 30$ API units.

Using the crossplot determine the fluid type of Zones F and G situated at 9402 and 9599 ft, respectively. (20 pts)
Question 9:

The following figures show a section of IES and FDC logs obtained in a 9100 ft-deep well drilled offshore Louisiana. R_m at a bottomhole temperature (BHT) of 156°F was 0.34 $\Omega\cdot m$. (20 pts)

a) Using the SP curve, determine the shale content of zone A in the logs.
b) List the assumptions implied in the procedure used in Part (a).
c) Using the gamma ray curve, determine the shale content of Zone A.
d) List the assumptions implied in the procedure used in Part (c).
e) Compare the values in Part (a) and (c); and recommend a V_{sh} value.
Question 10:

a. Assuming that the shale membrane is perfect and formation temperature is 200 F, estimate ESSP for a case where R_{mf} and R_w are 0.5 Ω m and 0.1 Ω m (at formation temperature), respectively. (5pts)

b. What will be the ESSP value if shale membrane is nonideal (R_{sh} is 2 Ω m at 200F). (5pts)
\[R_2 = R_1 \frac{T_1 + 6.77}{T_2 + 6.77} \]

\[f_w = \frac{1}{1 + \frac{k_{iw}T_w}{k_{uw}T_u}} \quad R_{mp} = \frac{FR_w}{(S_{cw})^n} \]

\[S_w = \left(\frac{0.81R_w}{\phi^2 R_i} \right)^{1/2} - \left(\frac{V_{sh}R_w}{0.4\phi R_{sh}} \right) \]

\[F = \frac{0.62}{\phi^{2.15}} \]

\[R_w = \frac{R_o}{F} \]

\[N_R = 7758 \frac{AF_R}{B_o} \sum_{i=1}^{n} h_i \phi_i (S_o)_i \]

\[(\phi_D)_{sh} = \begin{bmatrix} \rho_{ma} - \rho_b \\ \rho_{ma} - \rho_f \end{bmatrix} \]

\[\phi = \begin{bmatrix} (\Delta t - \Delta t_{ma}) \\ (\Delta t_f - \Delta t_{ma}) \end{bmatrix} \]

\[I_R = \frac{R_c}{R_o} \frac{7.5}{0.752} \]

\[S_w = \left(\frac{R_o}{R_i} \right)^{1/2} \quad S_o = 1 - S_w \]

\[\square = \square_{ma} \square_{b} + \square_N \quad \square_N = \square S_{so} \]

\[K = 61.3 + 0.133T \]

\[E_{ssf} = -K \left[\log \left(\frac{R_{so}}{R_{eq}} \right) \right] \]

\[\phi_D = \frac{\rho_{ma} - \rho_b}{\rho_{ma} - \rho_f} \]

\[\phi = \phi - V_{sh} (\phi_a)_{sh} \]

\[V_{sh} = 1.7 - \left[3.38 - (I_{sh} + 0.7)^3 \right]^{1/2} \]

\[I_{sh} = \frac{\gamma_{log} - \gamma_c}{\gamma_{sh} - \gamma_c} \]

\[V_{sh} = 0.33 \left(2^{2t_{sh}} - 1 \right) \]

\[V_{sh} = \frac{I_{sh}}{3 - 2I_{sh}} \]
Use the following grid paper for question#8